Expectation Maximization Algorithms for Estimating Bernstein Copula Density

نویسندگان

  • Xiaoling Dou
  • Satoshi Kuriki
  • Gwo Dong Lin
چکیده

On the basis of order statistics, Baker (2008) proposed a method for constructing multivariate distributions with fixed marginals. This is another representation of the Bernstein copula. According to the construction of Baker’s distribution, the Bernstein copula can be regarded as a finite mixture distribution. In this paper, we propose expectationmaximization (EM) algorithms to estimate the Bernstein copula function, and prove the local convergence property. Moreover, asymptotic properties of the proposed semiparametric estimators are provided. Illustrative examples are presented using real datasets. Keyword: Baker’s distribution, Bernstein polynomial, Density estimation, Linear convergence, Order statistic, Ordered categorical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression estimation based on Bernstein density copulas∗

The regression function can be expressed in term of copula density and marginal distributions. In this paper, we propose a new method of estimating a regression function using the Bernstein estimator for the copula density and the empirical distributions for the marginal distributions. The method is fully non-parametric and easy to implement. We provide some asymptotic results related to this c...

متن کامل

Testing Independence Based on Bernstein Empirical Copula and Copula Density

In this paper we provide three nonparametric tests of independence between continuous random variables based on Bernstein copula and copula density. The first test is constructed based on functional of Cramér-von Mises of the Bernstein empirical copula. The two other tests are based on Bernstein density copula and use Cramér-von Mises and Kullback-Leiber divergencetype respectively. Furthermore...

متن کامل

A Support Vector Method for Estimating Joint Density of Medical Images

Human learning inspires a large amount of algorithms and techniques to solve problems in image understanding. Supervised learning algorithms based on support vector machines are currently one of the most effective methods in machine learning. A support vector approach is used in this paper to solve a typical problem in image registration, this is, the joint probability density function estimati...

متن کامل

Asymptotic Properties of the Bernstein Density Copula for Dependent Data

Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for α−mixing data using Bernstein polynomials. We study the asymptotic properties...

متن کامل

Parameter Estimation for Bayesian Classification of Multispectral Data

In this paper, we present two algorithms for estimating the parameters of a Bayes classifier for remote sensing multispectral data. The first algorithm uses the Support Vector Machines (SVM) as a multi-dimensional density estimator. This algorithm is a supervised one in the sense that it needs in advance, the specification of the number of classes and some training samples for each class. The s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012